Module datarush.analytics
Class AbstractPMMLRegressionModel.RegressionTable
- java.lang.Object
-
- com.pervasive.datarush.analytics.regression.AbstractPMMLRegressionModel.RegressionTable
-
- Enclosing class:
- AbstractPMMLRegressionModel
protected static final class AbstractPMMLRegressionModel.RegressionTable extends Object
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
RegressionTable()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
addCategoricalPredictor(AbstractPMMLRegressionModel.CategoricalPredictor categoricalPredictor)
Add a term to the model in the form of a CategoricalPredictor element.void
addNumericPredictor(AbstractPMMLRegressionModel.NumericPredictor numericPredictor)
Add a term to the model in the form of a NumericPredictor element.protected void
buildModelElement(Element parent)
Add this RegressionTable to a PMML document as a child of the provided element.void
clearCategoricalPredictors()
Removes all the CategoricalPredictor elements from the tablevoid
clearNumericPredictors()
Removes all the NumericPredictor elements from the tableList<AbstractPMMLRegressionModel.CategoricalPredictor>
getCategoricalPredictors()
Gets the table's predictors that take a categorical (i.e.double
getIntercept()
Gets the constant term (a.k.a the intercept or bias) of the equation specified by the RegressionTable.Integer
getInterceptDegreesOfFreedom()
Gets the intercept's degrees of freedomDouble
getInterceptPValue()
Gets the intercept's t testDouble
getInterceptStandardError()
Gets the intercept's standard errorDouble
getInterceptTTest()
Gets the intercept's t testList<AbstractPMMLRegressionModel.NumericPredictor>
getNumericPredictors()
Gets the table's predictors that take a numeric value as input.String
getTargetCategory()
protected void
parseModelElement(Element element)
void
setExtensionStatistic(String name, double value)
void
setIntercept(double value)
Sets the intercept i.e.void
setInterceptDegreesOfFreedom(int value)
Sets the intercept's degrees of freedomvoid
setInterceptPValue(double value)
Sets the intercept's p valuevoid
setInterceptStandardError(double value)
Sets the intercept's standard errorvoid
setInterceptTTest(double value)
Sets the intercept's t testvoid
setTargetCategory(String targetCategory)
-
-
-
Method Detail
-
parseModelElement
protected void parseModelElement(Element element)
-
buildModelElement
protected void buildModelElement(Element parent)
Add this RegressionTable to a PMML document as a child of the provided element.- Parameters:
parent
- The parent of the table's PMML element.
-
setIntercept
public void setIntercept(double value)
Sets the intercept i.e. the bias term- Parameters:
value
- the desired intercept
-
setInterceptDegreesOfFreedom
public void setInterceptDegreesOfFreedom(int value)
Sets the intercept's degrees of freedom
-
setInterceptStandardError
public void setInterceptStandardError(double value)
Sets the intercept's standard error
-
setInterceptTTest
public void setInterceptTTest(double value)
Sets the intercept's t test
-
setInterceptPValue
public void setInterceptPValue(double value)
Sets the intercept's p value
-
getNumericPredictors
public List<AbstractPMMLRegressionModel.NumericPredictor> getNumericPredictors()
Gets the table's predictors that take a numeric value as input. The returned list does not support modification.- Returns:
- the NumericPredictor elements of this RegressionTable
-
getCategoricalPredictors
public List<AbstractPMMLRegressionModel.CategoricalPredictor> getCategoricalPredictors()
Gets the table's predictors that take a categorical (i.e. enum) value as input. The returned list does not support modification.- Returns:
- the CategoricalPredictor elements of this RegressionTable
-
getIntercept
public double getIntercept()
Gets the constant term (a.k.a the intercept or bias) of the equation specified by the RegressionTable.- Returns:
- the value of the intercept
-
getInterceptDegreesOfFreedom
public Integer getInterceptDegreesOfFreedom()
Gets the intercept's degrees of freedom
-
getInterceptStandardError
public Double getInterceptStandardError()
Gets the intercept's standard error
-
getInterceptTTest
public Double getInterceptTTest()
Gets the intercept's t test
-
getInterceptPValue
public Double getInterceptPValue()
Gets the intercept's t test
-
setTargetCategory
public void setTargetCategory(String targetCategory)
- Parameters:
targetCategory
- the targetCategory to set
-
getTargetCategory
public String getTargetCategory()
- Returns:
- the targetCategory
-
addNumericPredictor
public void addNumericPredictor(AbstractPMMLRegressionModel.NumericPredictor numericPredictor)
Add a term to the model in the form of a NumericPredictor element.- Parameters:
numericPredictor
- the predictor to add.
-
addCategoricalPredictor
public void addCategoricalPredictor(AbstractPMMLRegressionModel.CategoricalPredictor categoricalPredictor)
Add a term to the model in the form of a CategoricalPredictor element.- Parameters:
categoricalPredictor
- the predictor to add.
-
clearNumericPredictors
public void clearNumericPredictors()
Removes all the NumericPredictor elements from the table
-
clearCategoricalPredictors
public void clearCategoricalPredictors()
Removes all the CategoricalPredictor elements from the table
-
setExtensionStatistic
public void setExtensionStatistic(String name, double value)
-
-