Module datarush.analytics
Class AbstractPMMLRegressionModel.RegressionTable
- java.lang.Object
-
- com.pervasive.datarush.analytics.regression.AbstractPMMLRegressionModel.RegressionTable
-
- Enclosing class:
- AbstractPMMLRegressionModel
protected static final class AbstractPMMLRegressionModel.RegressionTable extends Object
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedRegressionTable()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidaddCategoricalPredictor(AbstractPMMLRegressionModel.CategoricalPredictor categoricalPredictor)Add a term to the model in the form of a CategoricalPredictor element.voidaddNumericPredictor(AbstractPMMLRegressionModel.NumericPredictor numericPredictor)Add a term to the model in the form of a NumericPredictor element.protected voidbuildModelElement(Element parent)Add this RegressionTable to a PMML document as a child of the provided element.voidclearCategoricalPredictors()Removes all the CategoricalPredictor elements from the tablevoidclearNumericPredictors()Removes all the NumericPredictor elements from the tableList<AbstractPMMLRegressionModel.CategoricalPredictor>getCategoricalPredictors()Gets the table's predictors that take a categorical (i.e.doublegetIntercept()Gets the constant term (a.k.a the intercept or bias) of the equation specified by the RegressionTable.IntegergetInterceptDegreesOfFreedom()Gets the intercept's degrees of freedomDoublegetInterceptPValue()Gets the intercept's t testDoublegetInterceptStandardError()Gets the intercept's standard errorDoublegetInterceptTTest()Gets the intercept's t testList<AbstractPMMLRegressionModel.NumericPredictor>getNumericPredictors()Gets the table's predictors that take a numeric value as input.StringgetTargetCategory()protected voidparseModelElement(Element element)voidsetExtensionStatistic(String name, double value)voidsetIntercept(double value)Sets the intercept i.e.voidsetInterceptDegreesOfFreedom(int value)Sets the intercept's degrees of freedomvoidsetInterceptPValue(double value)Sets the intercept's p valuevoidsetInterceptStandardError(double value)Sets the intercept's standard errorvoidsetInterceptTTest(double value)Sets the intercept's t testvoidsetTargetCategory(String targetCategory)
-
-
-
Method Detail
-
parseModelElement
protected void parseModelElement(Element element)
-
buildModelElement
protected void buildModelElement(Element parent)
Add this RegressionTable to a PMML document as a child of the provided element.- Parameters:
parent- The parent of the table's PMML element.
-
setIntercept
public void setIntercept(double value)
Sets the intercept i.e. the bias term- Parameters:
value- the desired intercept
-
setInterceptDegreesOfFreedom
public void setInterceptDegreesOfFreedom(int value)
Sets the intercept's degrees of freedom
-
setInterceptStandardError
public void setInterceptStandardError(double value)
Sets the intercept's standard error
-
setInterceptTTest
public void setInterceptTTest(double value)
Sets the intercept's t test
-
setInterceptPValue
public void setInterceptPValue(double value)
Sets the intercept's p value
-
getNumericPredictors
public List<AbstractPMMLRegressionModel.NumericPredictor> getNumericPredictors()
Gets the table's predictors that take a numeric value as input. The returned list does not support modification.- Returns:
- the NumericPredictor elements of this RegressionTable
-
getCategoricalPredictors
public List<AbstractPMMLRegressionModel.CategoricalPredictor> getCategoricalPredictors()
Gets the table's predictors that take a categorical (i.e. enum) value as input. The returned list does not support modification.- Returns:
- the CategoricalPredictor elements of this RegressionTable
-
getIntercept
public double getIntercept()
Gets the constant term (a.k.a the intercept or bias) of the equation specified by the RegressionTable.- Returns:
- the value of the intercept
-
getInterceptDegreesOfFreedom
public Integer getInterceptDegreesOfFreedom()
Gets the intercept's degrees of freedom
-
getInterceptStandardError
public Double getInterceptStandardError()
Gets the intercept's standard error
-
getInterceptTTest
public Double getInterceptTTest()
Gets the intercept's t test
-
getInterceptPValue
public Double getInterceptPValue()
Gets the intercept's t test
-
setTargetCategory
public void setTargetCategory(String targetCategory)
- Parameters:
targetCategory- the targetCategory to set
-
getTargetCategory
public String getTargetCategory()
- Returns:
- the targetCategory
-
addNumericPredictor
public void addNumericPredictor(AbstractPMMLRegressionModel.NumericPredictor numericPredictor)
Add a term to the model in the form of a NumericPredictor element.- Parameters:
numericPredictor- the predictor to add.
-
addCategoricalPredictor
public void addCategoricalPredictor(AbstractPMMLRegressionModel.CategoricalPredictor categoricalPredictor)
Add a term to the model in the form of a CategoricalPredictor element.- Parameters:
categoricalPredictor- the predictor to add.
-
clearNumericPredictors
public void clearNumericPredictors()
Removes all the NumericPredictor elements from the table
-
clearCategoricalPredictors
public void clearCategoricalPredictors()
Removes all the CategoricalPredictor elements from the table
-
setExtensionStatistic
public void setExtensionStatistic(String name, double value)
-
-