Class AbstractPMMLRegressionModel.RegressionTable

java.lang.Object
com.pervasive.datarush.analytics.regression.AbstractPMMLRegressionModel.RegressionTable
Enclosing class:
AbstractPMMLRegressionModel

protected static final class AbstractPMMLRegressionModel.RegressionTable extends Object
  • Constructor Details

    • RegressionTable

      protected RegressionTable()
  • Method Details

    • parseModelElement

      protected void parseModelElement(Element element)
    • buildModelElement

      protected void buildModelElement(Element parent)
      Add this RegressionTable to a PMML document as a child of the provided element.
      Parameters:
      parent - The parent of the table's PMML element.
    • setIntercept

      public void setIntercept(double value)
      Sets the intercept i.e. the bias term
      Parameters:
      value - the desired intercept
    • setInterceptDegreesOfFreedom

      public void setInterceptDegreesOfFreedom(int value)
      Sets the intercept's degrees of freedom
    • setInterceptStandardError

      public void setInterceptStandardError(double value)
      Sets the intercept's standard error
    • setInterceptTTest

      public void setInterceptTTest(double value)
      Sets the intercept's t test
    • setInterceptPValue

      public void setInterceptPValue(double value)
      Sets the intercept's p value
    • getNumericPredictors

      public List<AbstractPMMLRegressionModel.NumericPredictor> getNumericPredictors()
      Gets the table's predictors that take a numeric value as input. The returned list does not support modification.
      Returns:
      the NumericPredictor elements of this RegressionTable
    • getCategoricalPredictors

      public List<AbstractPMMLRegressionModel.CategoricalPredictor> getCategoricalPredictors()
      Gets the table's predictors that take a categorical (i.e. enum) value as input. The returned list does not support modification.
      Returns:
      the CategoricalPredictor elements of this RegressionTable
    • getIntercept

      public double getIntercept()
      Gets the constant term (a.k.a the intercept or bias) of the equation specified by the RegressionTable.
      Returns:
      the value of the intercept
    • getInterceptDegreesOfFreedom

      public Integer getInterceptDegreesOfFreedom()
      Gets the intercept's degrees of freedom
    • getInterceptStandardError

      public Double getInterceptStandardError()
      Gets the intercept's standard error
    • getInterceptTTest

      public Double getInterceptTTest()
      Gets the intercept's t test
    • getInterceptPValue

      public Double getInterceptPValue()
      Gets the intercept's t test
    • setTargetCategory

      public void setTargetCategory(String targetCategory)
      Parameters:
      targetCategory - the targetCategory to set
    • getTargetCategory

      public String getTargetCategory()
      Returns:
      the targetCategory
    • addNumericPredictor

      public void addNumericPredictor(AbstractPMMLRegressionModel.NumericPredictor numericPredictor)
      Add a term to the model in the form of a NumericPredictor element.
      Parameters:
      numericPredictor - the predictor to add.
    • addCategoricalPredictor

      public void addCategoricalPredictor(AbstractPMMLRegressionModel.CategoricalPredictor categoricalPredictor)
      Add a term to the model in the form of a CategoricalPredictor element.
      Parameters:
      categoricalPredictor - the predictor to add.
    • clearNumericPredictors

      public void clearNumericPredictors()
      Removes all the NumericPredictor elements from the table
    • clearCategoricalPredictors

      public void clearCategoricalPredictors()
      Removes all the CategoricalPredictor elements from the table
    • setExtensionStatistic

      public void setExtensionStatistic(String name, double value)