Package | Description |
---|---|
com.pervasive.datarush.analytics.arm |
Provides common classes for Association Rule Mining (ARM).
|
com.pervasive.datarush.analytics.cluster |
Provides base PMML for clustering models.
|
com.pervasive.datarush.analytics.decisiontree |
Provides PMML model classes for decision trees.
|
com.pervasive.datarush.analytics.decisiontree.predictor |
Provides the decision tree predictor operator and associated classes.
|
com.pervasive.datarush.analytics.naivebayes |
Provides PMML model classes for Naive Bayes.
|
com.pervasive.datarush.analytics.naivebayes.predictor |
Provides an implementation of a Naive Bayes predictor.
|
com.pervasive.datarush.analytics.pmml |
Provides shared and base classes for PMML model representation of Analytics algorithms.
|
com.pervasive.datarush.analytics.regression |
Provides utility, PMML and other classes for shared use by regression related entities.
|
com.pervasive.datarush.analytics.stats |
Provides various statistics, Data Summarizer, and Data Quality Analyzer.
|
com.pervasive.datarush.analytics.svm |
Provides PMML model classes for SVM.
|
com.pervasive.datarush.analytics.svm.predictor |
Provides an implementation of an SVM predictor.
|
com.pervasive.datarush.analytics.util |
Provides some (internal) utility classes for Analytics.
|
Modifier and Type | Method and Description |
---|---|
static PMMLModelSpec |
MetadataHelper.createPMMLSpec(RecordTokenType inputType,
String txnFieldName,
String itemFieldName)
Build the PMML model specification for an ARM model given the transaction field and item field names.
|
Constructor and Description |
---|
PMMLAssociationModel(PMMLModelSpec spec)
Construct a
PMMLAssociationObject from the given specification. |
Modifier and Type | Method and Description |
---|---|
static PMMLClusteringModel.Builder |
PMMLClusteringModel.builder(PMMLModelSpec spec,
ModelClass modelClass,
ComparisonMeasure comparisonMeasure,
Cluster[] clusters)
Creates a builder that builds
PMMLClusteringModel
instances with the provided model specification, model class,
comparison measure and clusters. |
protected RecordTokenType |
ClusterPredictor.predictedType(PMMLModelSpec modelSpec) |
Constructor and Description |
---|
PMMLTreeModel(PMMLModelSpec modelSpec)
Create a PMMLTreeModel for the given spec.
|
Modifier and Type | Method and Description |
---|---|
protected RecordTokenType |
DecisionTreePredictor.predictedType(PMMLModelSpec modelSpec) |
Constructor and Description |
---|
PMMLNaiveBayesModel(PMMLModelSpec modelSpec)
Create a PMMLNaiveBayesModel for the given spec.
|
Modifier and Type | Method and Description |
---|---|
protected RecordTokenType |
NaiveBayesPredictor.predictedType(PMMLModelSpec spec) |
Modifier and Type | Method and Description |
---|---|
static PMMLModelSpec |
PMMLModelSpec.forAll(RecordTokenType inputType,
String... targetColumns)
Convenience method to create a model spec where the learning columns
are all input columns minus the target columns
|
static PMMLModelSpec |
PMMLModelSpec.forSelected(RecordTokenType inputType,
List<String> selectedColumns,
String... targetColumns)
Convenience method to create a model spec where the learning columns
are the specified selected columns minus the set of target columns.
|
PMMLModelSpec |
PMMLModel.getModelSpec()
Returns the meta-information associated with this PMML model
|
PMMLModelSpec |
PMMLPort.Metadata.getPMMLModelSpec()
Returns the underlying PMML model metadata
|
PMMLModelSpec |
PMMLPort.getPMMLModelSpec(MetadataContext ctx)
Getter to be used to set the PMMLModelSpec for a PMMLPort
|
Modifier and Type | Method and Description |
---|---|
void |
PMMLPort.setPMMLModelSpec(MetadataCalculationContext ctx,
PMMLModelSpec spec)
Setter to be used to set the PMMLModelSpec for PMML ports.
|
Constructor and Description |
---|
Metadata(PMMLModelSpec pmmlModelSpec)
Creates a new port metadata
|
PMMLModel(PMMLModelSpec objectSpec)
Create a model, specifying a model spec.
|
Modifier and Type | Method and Description |
---|---|
protected RecordTokenType |
RegressionPredictor.predictedType(PMMLModelSpec modelSpec) |
protected RecordTokenType |
LogisticRegressionPredictor.predictedType(PMMLModelSpec modelSpec) |
Constructor and Description |
---|
AbstractPMMLRegressionModel(PMMLModelSpec objectSpec) |
PMMLRegressionClassificationModel(PMMLModelSpec objectSpec) |
PMMLRegressionModel(PMMLModelSpec objectSpec)
Construct the PMML model from a model specification.
|
Constructor and Description |
---|
PMMLSummaryStatisticsModel(PMMLModelSpec modelSpec)
Create a PMMLSummaryStatisticsModel for the given spec.
|
Constructor and Description |
---|
PMMLSupportVectorMachineModel(PMMLModelSpec modelSpec)
Create a PMMLSupportVectorMachineModel for the given spec.
|
Modifier and Type | Method and Description |
---|---|
protected RecordTokenType |
SVMPredictor.predictedType(PMMLModelSpec modelSpec) |
Modifier and Type | Method and Description |
---|---|
PMMLModelSpec |
MixedTypeMetadataHelper.getPmmlSpec() |
Modifier and Type | Method and Description |
---|---|
protected abstract RecordTokenType |
AbstractPredictor.predictedType(PMMLModelSpec modelSpec)
Given the model spec, returns the predicted type.
|
Copyright © 2024 Actian Corporation. All rights reserved.